Sampling power-law distributions
نویسنده
چکیده
Power-law distributions describe many phenomena related to rock fracture. Data collected to measure the parameters of such distributions only represent samples from some underlying population. Without proper consideration of the scale and size limitations of such data, estimates of the population parameters, particularly the exponent D, are likely to be biased. A Monte Carlo simulation of the sampling and analysis process has been made, to test the accuracy of the most common methods of analysis and to quantify the confidence interval for D. The cumulative graph is almost always biased by the scale limitations of the data and can appear non-linear, even when the sample is ideally power law. An iterative correction procedure is outlined which is generally successful in giving unbiased estimates of D. A standard discrete frequency graph has been found to be highly inaccurate, and its use is not recommended. The methods normally used for earthquake magnitudes, such as a discrete frequency graph of logs of values and various maximum likelihood formulations can be used for other types of data, and with care accurate results are possible. Empirical equations are given for the confidence limits on estimates of D, as a function of sample size, the scale range of the data and the method of analysis used. The predictions of the simulations are found to match the results from real sample D-value distributions. The application of the analysis techniques is illustrated with data examples from earthquake and fault population studies.
منابع مشابه
Rules of Thumb for Information Acquisition from Large and Redundant Data
We develop an abstract model of information acquisition from redundant data. We assume a random sampling process from data which contain information with bias and are interested in the fraction of information we expect to learn as function of (i) the sampled fraction (recall) and (ii) varying bias of information (redundancy distributions). We develop two rules of thumb with varying robustness. ...
متن کاملStatistical Analyses Support Power Law Distributions Found in Neuronal Avalanches
The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with exponent close to -1.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However, identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested the power law hypothesi...
متن کاملRandom Evolution in Massive Graphs
Many massive graphs (such as WWW graphs and Call graphs) share certain universal characteristics which can be described by socalled the “power law”. In this paper, we will first briefly survey the history and previous work on power law graphs. Then we will give four evolution models for generating power law graphs by adding one node/edge at a time. We will show that for any given edge density a...
متن کاملUnderestimating extreme events in power-law behavior due to machine-dependent cutoffs.
Power-law distributions are typical macroscopic features occurring in almost all complex systems observable in nature. As a result, researchers in quantitative analyses must often generate random synthetic variates obeying power-law distributions. The task is usually performed through standard methods that map uniform random variates into the desired probability space. Whereas all these algorit...
متن کاملOn the structure of protein-protein interaction networks.
We present a simple model for the underlying structure of protein-protein pairwise interaction graphs that is based on the way in which proteins attach to each other in experiments such as yeast two-hybrid assays. We show that data on the interactions of human proteins lend support to this model. The frequency of the number of connections per protein under this model does not follow a power law...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002